Feugiat nulla facilisis at vero eros et curt accumsan et iusto odio dignissim qui blandit praesent luptatum zzril.
+ (123) 1800-453-1546

Related Posts

Essential gene analysis in Acinetobacter baumannii by high-density transposon mutagenesis and CRISPR interference

March 29, 2021

Jinna Bai, Yunfei Dai, Andrew Farinha, Amy Y. Tang, Sapna Syal, German Vargas-Cuebas, Tim van Opijnen, Ralph R. Isberg, Edward Geisinger

J Bacteriol. 2021 Mar 29:JB.00565-20.  Online ahead of print.
PMID: 33782056 | DOI: 10.1128/JB.00565-20


Acinetobacter baumannii is a poorly understood bacterium capable of life-threatening infections in hospitals. Few antibiotics remain effective against this highly resistant pathogen. Developing rationally-designed antimicrobials that can target A. baumannii requires improved knowledge of the proteins that carry out essential processes allowing growth of the organism. Unfortunately, studying essential genes has been challenging using traditional techniques, which usually require time-consuming recombination-based genetic manipulations. Here, we performed saturating mutagenesis with dual transposon systems to identify essential genes in A. baumannii and we developed a CRISPR-interference (CRISPRi) system for facile analysis of these genes. We show that the CRISPRi system enables efficient transcriptional silencing in A. baumannii Using these tools, we confirmed the essentiality of the novel cell division protein AdvA and discovered a previously uncharacterized AraC-family transcription factor (ACX60_RS03245) that is necessary for growth. In addition, we show that capsule biosynthesis is a conditionally essential process, with mutations in late-acting steps causing toxicity in strain ATCC 17978 that can be bypassed by blocking early-acting steps or activating the BfmRS stress response. These results open new avenues for analysis of essential pathways in A. baumannii ImportanceNew approaches are urgently needed to control A. baumannii, one of the most drug resistant pathogens known. To facilitate the development of novel targets that allow inhibition of the pathogen, we performed a large-scale identification of genes whose products the bacterium needs for growth. We also developed a CRISPR-based gene knockdown tool that operates efficiently in A. baumannii, allowing rapid analysis of these essential genes. We used these methods to define multiple processes vital to the bacterium, including a previously uncharacterized gene-regulatory factor and export of a protective polymeric capsule. These tools will enhance our ability to investigate processes critical for the essential biology of this challenging hospital-acquired pathogen.

Source: https://pubmed.ncbi.nlm.nih.gov/33782056/